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1 Introduction

The numerical investigation of gravitational collapse of rotating stellar configurations lead-

ing to black hole formation is a long standing problem in numerical relativity. However,

it is through numerical simulations in general relativity that one can hope to improve

our knowledge of fundamental aspects of Einstein’s theory such as the cosmic censorship

hypothesis and black hole no-hair theorems, along with that of current open issues in rel-

ativistic astrophysics research, such as the mechanism responsible for gamma-ray bursts.

Furthermore, numerical simulations of stellar gravitational collapse to black holes pro-

vide a unique means of computing the gravitational waveforms emitted in such events,

believed to be among the most important sources of detectable gravitational radiation.

The modelling of black hole spacetimes with collapsing matter-sources in multidimen-
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sions is one of the most formidable efforts of numerical relativity. This is due, on one hand,

to the nonlinear properties of the equations to be integrated (the Einstein equations cou-

pled to the hydrodynamics equations), and, on the other hand, to the vast computational

resources needed in three-dimensional (3D) evolutions.

I will give a very brief overview of this research area, discussing in particular

• why black holes may be final state of compact stars

• toy-model: collapse of a dust sphere to a black hole (Oppenheimer-Snyder)

• dynamics of trapped surfaces

• non-spherical collapse to black holes

Hereafter, I will assume the reader is familiar with the foundations of General Relativity,

use a spacelike signature (−,+,+,+) and a system of units in which c = G = M� = 1.
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2 Compact Stars and Black Holes

Within a more realistic astrophysical context, any discussion on gravitational collapse to

black holes would necessarily start from considering the existence of the “progenitors”, i.e.

of stars that during their evolution would meet conditions in which the pressure support

can no longer balance the gravitational attraction. However, I will not do this here and,

rather, by-pass the problem assuming that I can construct a spherical stellar model which

will not be able to avoid to collapse to a black hole.

All you need to do to convince yourself that this scenario is at least plausible if not re-

alistic1 is to consider the simplest possible example: i.e. a spherically-symmetric, uniform

density, perfect-fluid star. Before we look into why the gravitational collapse may be un-

avoidable in this case, let us construct such a star which will be described by a stress-
1In a constant density star the speed of sound is infinite and clearly unphysical. However, the interior of neutron stars the density is nearly uniform.
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energy tensor of the type

T µν = (ρ + p)uµuν + pgµν, (1)

where ρ, uµ and p are the total mass-energy density, the fluid 4-velocity and the (isotropic)

pressure, respectively.

The stellar configuration will therefore be a solution of the hydrodynamics equations

for the conservation of energy-momentum

∇αT
αβ = 0. (2)

and of baryon number n ≡ ρ∗/m0

∇α(nuα) = 0. (3)

where m0 is the mass of the particles composing the fluid (I am assuming they are of one

type only) and ρ∗ the rest-mass density. In eqs. (2) and (3), the operator ∇ represents the
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covariant derivative with respect to the spherically symmetric line-element

ds2 = −e2Φdt2 + e2Λdr2 + r2dΩ2. (4)

where dΩ2 = dθ2 + sin2 θdφ2. Projecting now eq. (2) in the direction orthogonal to the fluid

4-velocity through the projector operator

P αβ = uαuβ + gαβ. (5)

we obtain the general relativistic Euler equations

(p + ρ)aµ = −Pµβp,β, (6)

where aµ ≡ uµ;βu
β is the fluid 4-acceleration. Once recast in form (6), the comparison with

the corresponding Euler equations for a fluid with 3-velocity vi in a Newtonian potential

ΦNewt

ρ(∂tv
i + vj∂jv

i) = −∂ip− ∂iΦNewt, (7)
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is rather transparent. Imposing the conditions of stationarity and spherical symmetry, the

only non-trivial Euler equation reduces to

(p + ρ)
dΦ

dr
= −dp

dr
(8)

where Φ is there a metric potential and is clearly related to the corresponding Newtonian

gravitational potential ΦNewt. Next, we consider the Einstein field equations Gαβ = 8πTαβ

and introduce a re-parametrization of the radial metric function introducing the function

m(r) ≡ 1

2
r(1− e−2Λ), (9)

so that

grr ≡ e2Λ =

(
1− 2m(r)

r

)−1

. (10)

Indicating with a ′ the radial derivative, the non-zero components of the Einstein tensor
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are

G00 =
e2Φ

r
[r(1− e−2Λ)]

′
, Grr = −e

2Λ

r
[1− e−2Λ] +

2

r
Φ′, (11)

Gθθ = r2e−2Λ

[
Φ′′ − (Φ′)

2
+

Φ′

r
− Φ′Λ′ − Λr

′
]
, Gφφ = Gθθ sin2 θ. (12)

so that the Einstein equations become

dm(r)

dr
= 4πr2ρ, (13)

dp

dr
= −(p + ρ)(m + 4πr3p)

r(r − 2m)
. (14)

Eqs. (8), (13), (14) together with an equation of state relating p and ρ [i.e. p = p(ρ)]

are known as the Tolmann, Oppenheimer, Volkoff (TOV) equations and their solutions

requires, in general, a numerical integration. Fortunately, in the case of a spherically-
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symmetric, uniform-density star, analytic expressions are available.

Recalling that Birkhoff’s theorem guarantees that the exterior spacetime will be the

Schwarzschild one, we easily deduce that the metric functions will be given by

grr =


(

1− 2

r

4πr3

3
ρ0

)−1

for r ≤ R (interior),(
1− 2M

r

)−1

for r > R (Schwarzschild),
(15)

and

eΦ =


3

2

(
1− 2M

R

)1/2

− 1

2

(
1− 2Mr2

R3

)1/2

for r ≤ R (interior),

1− 2M

R
for r > R (Schwarzschild),

where M is the “gravitational mass” of the star

M =

∫ R

0

4πr2ρ0dr =
4π

3
R3ρ0, (16)

so that

ρ0 =
3M

4πR3
, (17)
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R its radius and ρ0 the average density. Note that although the density is uniform within

the star, the pressure is not and is given by

p = p(r) = ρ0
(1− 2Mr2/R3)

1/2 − (1− 2M/R)1/2

3(1− 2M/R)1/2 − (1− 2Mr2/R3)1/2
; (18)

so that the radius can be calculated explicitly from the values of ρ0 and pc ≡ p(r = 0) as the

radial position at which p = 0

R =
3

8πρ0

[
1− (ρ0 + pc)

2

(ρ0 + 3pc)
2

]
. (19)

Overall, the uniform-density solution depends on a single parameter ρ0, but has an im-

portant limit in the compactness M/R. In particular, eq. (18) indicates that pc → ∞ for

M/R→ 4/9 so that infinite pressures are necessary to support a star with a radius smaller

than 9/8 of the Schwarzschild radius RS ≡ 2M . As a result, should a star reach such compact-

nesses, its final fate can only be that of a black hole (This is also known as “Buchdal’s theorem”
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and applies also for realistic equations of state.).
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3 Collapse of a dust sphere to a black hole

So far we have concentrated on stationary configurations but the gravitational collapse is

clearly a dynamical process involving considerable portions of spacetime. Also in this

case, it is useful to start studying a simplified scenario as the one offered by the col-

lapse of a star composed of uniform-density pressurless dust. This is also known as the

Oppenheimer-Snyder (OS) collapse. In this case, in fact, the fluid motion is particularly

simple (i.e. it is that of collisionless particles having a collective motion in the same di-

rection) and the spherical symmetry (via the Birkhoff’s theorem) guarantees that the only

portion of the spacetime that is undergoing an effective evolution is the stellar interior one,

since the exterior always remains that of a Schwarzschild solution (albeit with a dynamical

boundary).



12

Before looking at the details of the dynamics it is useful to consider the set of equa-

tions, both Einstein and hydrodynamical, that describe the process; as we will see, these

equations are well known also in a different (cosmological) contest.

We start considering a spherically symmetric, diagonal line element 2 of the form

ds2 = −a2dt2 + b2dr2 + R2dΩ2. (20)

where a and b are functions of (r, t). Here, R is a circumferential radial coordinate since the

proper circumference is calculated simply as

C =

∫
r, θ = const.

√
ds2 =

∫
√
gφφdφ = 2πR. (21)

Adopting a set of comoving coordinates, the fluid 4-velocity is uα = (u0, 0, 0, 0), and since
2In spherical symmetry we can always to this.
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uαuα = −1, we have that

uα = (a−1, 0, 0, 0), uα = (−a, 0, 0, 0). (22)

To cast the hydrodynamic equations in a form that resembles the Newtonian one, it is

better to introduce differential operators that measure variations with respect to the proper

distance. In general

∂

∂(proper xβ coordinate)
=

∂
√
gαβ∂xβ

, (23)

Dt = proper time derivative ≡ 1

a
∂t, (24)

Dr = proper radius derivative ≡ 1

b
∂r. (25)
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As a result, we can introduce the quantities

u ≡ DtR =
1

a
∂tR, Γ ≡ DrR =

1

b
∂rR, (26)

so that u is the radial component of a 4-velocity in a coordinate system that has R as

the radial, while Γ measures the variation of the circumferential radius with respect to

the radial coordinate. Within this framework, the full set of hydrodynamics and field
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equations is then given by

Dtρ

(ρ + p)
=
Dtρ0

ρ0
, (conservation of energy), (27)

Dtρ0

ρ0
= − 1

R2
∂R(uR2), (conservation of baryon number), (28)

Dtu = − Γ

ρ + p
Drp−

m

R2
− 4πpR, (conservation of momentum). (29)

DtΓ = − u

ρ + p
Drp, Dtm = −4πR2uρ. (30)

Γ = 1 + u2 − 2m

R
. (31)

Note that eq. (31) indicates how Γ is the general relativistic analogue of the Lorentz factor

in special relativity (Γ = 1 in Newtonian physics). Eqs. (27) – (31), together with an
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equation of state, represent the set of equations to be solved to compute the evolution of

the interior spacetime of a spherical collapse.

Note also that since the dust particles will be collisionless and all having the same radial

motion, p = 0 and this simplifies the above set of equations considerably. Also, since

the rest-mass is conserved during the collapse we can introduce new variable that labels

different shells with the rest-mass they contain, i.e.

µ(r) =

∫
4πR2ρ∗bdr. (32)

where ρ∗ is the rest-mass density. Clearly, this parametrization is valid as long as each shell

does not interact with the neighbouring ones, i.e. there is no shell-crossing.

Let us now consider in detail the consequences of the assumption that the fluid is homo-

geneous, i.e. Drp = 0 = Drρ. In this case, the first of eqs. (30) reduces to DtΓ = 0, so that
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Γ = Γ(µ) only and

m =

∫ R0

0

4πR2ρdR =
4π

3
R3

0ρ. (33)

Let us now adopt a “comoving-observer gauge”, i.e. a gauge in which the time coordi-

nate is the proper time on a line dxi = 0 and such that g00 = a = 1 or, equivalently, Dt = ∂t.

Furthermore, because of the homogeneity at any point, we can decompose R = R(µ, t) as

R = F (t)R̃(µ), so that

Ṙ ≡ ∂tR = u = Ḟ R̃ =
Ḟ

F
R, (34)

and the Einstein eq. (31) becomes

Γ2 = 1 + u2 − 2m

R
= 1 + R2

(Ḟ
F

)2

− 8πρ

3

 = 1− κR
2(µ, t)

S2(t)
, (35)

where κ = 0,±1 accounts for the sign of the term in square brackets and S is a function of

time only and just a shorthand for what contained in the square brackets. Because of the
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decomposition of R, the ratio R̃/S is a function of r only and thus we can simply write

Γ2 = 1− κr2, (36)

so that the line element (20) becomes

ds2 = −a2dt2 + b2dr2 + R2dΩ2 = −dt2 + S2(t)

[
dr2

1− κr2
+ r2dΩ2

]
. (37)

Clearly, the line element (37) is the metric of a Friedmann-Robertson-Walker cosmological

solution where the function S (i.e. the conformal factor of the spatial part of the metric) is

simply the “scale factor”. Similarly, it will not be surprising that when expressed in this

metric, the hydrodynamic and Einstein equations will essentially reduce to the Friedmann
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equations

S̈ = −4π

3
(p + ρ)Sr, (38)

Ṡ2 − 8π

3
ρS2 = −κ. (39)

Stated differently, the spatial part of the line element (37) describes geometries with differ-

ent constant curvatures (i.e the curvature is the same everywhere but it is not constant in

time), with the different geometries being selected by the values of the coefficient κ.

Stated differently, in spherical symmetry, the dynamical spacetime of a collapsing (expanding)

region occupied by homogeneous matter is a Friedmann-Robertson-Walker (FRW)-Universe.

Cosmologically, there are three possible solutions according to the value of κ and thus

on the constant curvature (κ = −1, curved open Universe; κ = 0: flat Universe, κ = 1;
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curved closed Universe). Clearly, the relevant solution in the context of an OS collapse is

the one with positive constant curvature (i.e. κ = 1) in which case the line element can be

expressed in terms of comoving hyperspherical coordinates (χ, θ, φ)

ds2 = −dτ 2 + S(τ )[dχ2 + sin2 χdΩ2] (40)

where χ = sin−1 r.

There is an important difference between the FRW Universe and the spacetime of an

OS collapse since in the latter case not all of the spacetime is occupied by matter (the dust

sphere has initially a finite radial size R0) and the vacuum portion (i.e. for R > R0) will be

described by a Schwarzschild spacetime. The matching between the two portions can be

done at the surface of the star my requiring the continuity of the proper circumference

CSchw. =

∫
√
gφφdφ = 2πR0 = CFRW = 2πS sinχ0. (41)
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Since (41) must hold at all times, we have that

R0 = S sinχ0. (42)

Let us now consider the equations of motion in the collapsing portion of the spacetime.

In this case, eq. (30), reduces toDtm = −4πR2up = 0, thus implying thatm is not a function

of time but of radius only, i.e. m = m(µ) as it should be in the absence of shocks. Similarly,

eq. (29) reduces to

Dtu = −m/R2 (43)

which is essentially the geodetic equation. The trajectory of any shell can therefore be

obtained through a time integration of (43) and is given by

Ṙ ≡ dR

dτ
= DtR =

(
2m

R
− 2m

R0

)1/2

. (44)
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In other words, a shell of dust will go from R0 to R = 0 in a finite proper time

τ =
π

2
R0

(
R0

2M

)1/2

. (45)

Note that this time will be the same for all initial radial positions R; this is a trivial conse-

quence of the uniformity in density, for which the ratio R3/m(R) = const..



23

time

proper

space

stellar surface

interior

Figure 1: Schematic worldines of dust shells in an OS collapse. Note that all the shells reach the singularity at the same proper time.

A schematic diagram showing the worldlines of different radial shells in an OS col-

lapse is shown in Fig. 1. Note they all reach the singularity at the same proper-time

τ = π
2R0

(
R0
2M

)1/2

.
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Once expressed in the coordinate system (40) and after introducing the η ∈ [0, π] is the

“cycloid parameter”, the equations of motion take the simpler form

R =
R0

2
(1 + cos η), S(η(τ )) =

Sm
2

(1 + cos η), τ =
Sm
2

(η + sin η), (46)

where η is essentially playing the role of a time coordinate (η = 0 at the beginning of

collapse and η = π at the end).

Using now eqs (46) and the condition (41) one finds that

Sm =

(
R3

0

2M

)1/2

, χ0 = sin−1

(
2M

R0

)1/2

. (47)

Particularly interesting is to calculate the proper time τ at which a shell initially at R0

reaches R = 2M . This can be computed from (46) and is given by

τ2M =

(
R3

0

2M

)1/2

(η2M + sin η2M ), (48)
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where η2M ≡ cos−1(4M/R0 − 1). These expressions will be useful in the following Section,

when I will discuss what happens to outgoing photons as the collapse proceeds and that

may never reach null infinity.
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4 Collapse of a dust sphere to a black hole: Trapped Surfaces

It is well known that if the end-result of the spherical collapse will be a Schwarschild

black hole, the physical singularity will covered by an event horizon, a null surface that

photons cannot leave. However, the Schwarzschild solution will be reached only asymp-

totically and is interesting to ask how the event horizon is formed during collapse; in

practice we need to study the trajectory of the outermost outgoing photon that was not

able to reach null infinity. Similarly, we can calculate where, at each instant during the

collapse, the last outgoing photon will be sent and reach null infinity. This surface will

mark the outermost trapped surface, i.e. the apparent horizon and by definition will always

be contained within the event horizon.

Let’s us consider therefore the worldline of an outgoing radial photon. In this case, ds2 =



27

0 = dθ = dφ and the line element (40) then yields the curves

dχ

dτ
= ±S(τ ), (49)

Using now the cycloid parameter η [cf. eqs (46)], it is easy to show that these photons

propagate along straight lines in a (χ, η) plane

dχ

dη
= ±1, (50)

or, stated differently, follow curves of the type

χ = χe ± (η − ηe), (51)

where χe and ηe and the “place” and “time” of emission, respectively. A swarm of outgoing

photons will be trapped if their proper area will not grow in time, i.e. iff

dA
dη
≤ 0, (52)
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where A ≡
∫ √

gθθgφφdθdφ. Writing out the condition (52) explicitely yields

ηe ≥ π − 2χe, (53)

which indicates that any outgoing photon emitted at a position χe and at a time ηe will be

able to propagate out if and only if ηe is smaller that π− 2χe (i.e. a region in a (χ, η) plane).

Out of all the possible trapped surfaces, the most important is certainly the outermost

one since it will discriminate between the photon that will propagate to null infinity from

the one that will be trapped. Such a surface selects the apparent horizon and since χe ≤ χ0

(you must emit from within star) it is simply expressed as

ηah = π − 2χ0 = 2 cos−1

(
2M

R0

)1/2

, (54)

where we have used expression (47) to derive the last term in (54).

It is now natural to ask: when does the apparent horizon first form and where is it
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located? Luckily, answering these questions in the case of an OS collapse is particularly

simple and reveals that the apparent horizons first forms when the stellar surface crosses R =

2M . Note that this is true only in the OS collapse.

Finally, we consider the evolution of the event horizon which is defined as the surface

for which the equality in condition (52) holds. Using the constraint that the event horizon

is always outside or coincides with the apparent horizon, we can set χeh = χah when

η = ηah, the worldline for the event horizon is given by

χeh = χ0 + (η − ηah), (55)

for η ≤ ηah. Using now the circumferential radial coordinate we can write that

Reh =
1

2

(
R3

0

2M

)1/2

(1 + cos η) sin(χ0 + η − ηah). (56)

An important property to deduce from (56) is that the event horizon starts from a zero
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radius and then progressively grows to reach R = 2M ; this is to be contrasted with what

happens for the apparent horizon that is first formed with a nonzero radial size.
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time

proper

space

stellar surface

DUST

trapped
surfaces

event horizon

2M

Figure 2: Schematic evolution of the relevant surfaces in the collapse of dust sphere.

The dynamics of the trapped surfaces is summarized in Fig. 2. Note that the event

horizon grows from a zero size well before the apparent horizon is formed.
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Much of what learnt about the dynamics of trapped in the OS collapse continues to hold

also in the case of the collapse of a perfect fluid, which offers two two main differences

with the respect to the case of dust. The first difference is present already in spherical

symmetry and is that the apparent horizon is not produced at the time the stellar surface

reaches R = 2M but can, because of the fluid compression, be formed also earlier.
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time

proper

space

event horizon

outermost trapped surface

FLUID

stellar surface

(apparent horizon)
surface

innermost trapped

Figure 3: Schematic evolution of the relevant surfaces in the collapse of dust sphere.

The dynamics of the trapped surfaces is summarized in Fig. 3. Note that the apparent

horizon is formed after the event horizon but not when the stellar surface crosses R = 2M
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5 Non-spherical Fluid Collapse

Recently, we have performed calculations in 3D and Cartesian coordinates of realistic ini-

tial data consisting of rapidly rotating neutron stars collapsing to Kerr black holes (Baiotti

et al. (2004)). The initial stellar models were modelled as relativistic polytropes which

are either secularly or dynamically unstable and with angular velocities which range from

slow rotation to the mass-shedding limit. The study involved not only the dynamics of the

matter, but also that of the trapped surfaces, i.e. of both the apparent and event horizons

formed during the collapse. The use of these surfaces allows for a precise measurement of

the black hole mass and spin. The dynamics of the collapsing matter is strongly influenced

by the initial angular momentum and, for initial models with high angular velocities, the

collapse can lead to the formation of an unstable disc in differential rotation.
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6 A Crash-Course in Numerical Relativity

6.1 Einstein Equations

The Einstein equations written in the coordinate invariant form

Gµν = Rµν − 1
2R = 8πTµν

are a coupled system of 10 differential equations.

• Locally there exists a coordinate system where the speed of light is constant

• All physics is invariant under coordinate transformations

• For vacuum spacetimes Tµν vanishes; not what we are interested in

• Space and time are fully mixed and time is on equal footings as space

• In numerical relativity some coordinate system must be introduced.
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6.2 Covering a whole spacetime

The 3 + 1 Cauchy form is natural for some situations. But the coordinate system chosen

is unlikely to cover the whole spacetime. Other formulations can be chosen, such as the

characteristic or conformal decompositions.
i

i

i

I

I

−

−

+

+

0

slices
spacelike

i

i

i

I

I

−

−

+

+

0

characteristic
slices

i

i

i

I

I

−

−

+

+

0

conformal
slices

Cauchy Characteristic “Conformal”

Each method has its advantages and disadvantages but we (as most of the groups in

numerical relativity) use and restrict our attention to a 3 + 1 Cauchy approach (Figs. by D.

Pollney).
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6.3 3+1 decomposition

A decomposition of spacetime in “space” (3) and “time” (1) was proposed by Arnowitt-

Deser-Misner (1962). In practice, the idea is split the 4-metric as

 g00 g0b

ga0 gab

 =

 −α2 + βiβi βb

βa γab

 space

αdt

time

β dt

where γab is the 3-metric in the slice, α is the lapse (relating the time coordinates between

two slices) and βa is the shift (relating the space coordinates between two slices).

As a result, γab, Kab are dynamical variables, while α, βa are gauge variables.
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6.4 ADM equations - standard form

4D vacuum Einstein equations (10):

(4)Rµν −
1

2
gµν

(4)R = 0

Evolution equations (6+6):

∂tγab = −2αKab + Lβγab

∂tKab = −∇a∇bα + α(Rab + KKab − 2KaiK
i
b) + LβKab

Constraints (1+3):

H = R + K2 −KijK
ij = 0 (Hamiltonian)

Ma = ∇i(Kai − γaiK) = 0 (Momentum)

Note that the Lβ is the Lie derivative along the shift vector and that Ricci tensor Rab is

given by second spatial derivatives of the 3-metric γab. As a result, this is not a first order

system.
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6.5 Singularity avoiding slicings

geodesic slicing maximal slicing

α = 1 K = 0→−∇i∇iα + α(ÃijÃ
ij + 1

3K
2) + LβK

The geodesic slicing soon “hits” the singularity. However, the maximal slicing may suffer

of slice stretching, i.e. exponential growth of maxima in the metric at the lapse shoulder.
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6.6 Shift conditions

Smarr-York (1978) proposed a shift based on minimizing changes in the metric during

evolution.

space

αdt

time

β dt

Define:

Θab = 1
2 ⊥ Ltγ̃ab (strain tensor)

Σab = Θab − 1
3γ̃abΘ

i
i (distortion tensor)

Minimizing ΣijΣ
ij under changes of βa leads to the “minimal distortion shift”

∇i∇iβ
a +

1

3
∇a∇iβ

i + Ra
iβ
i − 2(Kai − 1

3
γaiK)∇iα = 0
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6.7 Singularity Excision

The region of the grid inside the event horizon is causally disconnected from the region

outside. In principle, the excised region inside the horizon should not influence the evolu-

tion outside; in practice it can via gauge-modes.

horizonexcision boundary

We can cut a region from the grid inside the horizon and remove the singularity (Figs. by

D. Pollney). The boundary condition should not influence the evolution outside.
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6.8 Relativistic Hydrodynamics Equations

The hydrodynamical equations are given by the local conservation of baryon number and

of energy-momentum

∇µJ
µ = ∇µ(ρuµ), (57)

and

∇µT
µν = ∇µ(ρhuµuν + pgµν), (58)

respectively, where ρ is the rest-mass density, p the pressure, h the specific enthalpy, and

gµν the metric components. The usual thermodynamic expressions relating e and p to the

specific enthalpy h and to the specific internal energy ε of the fluid are

e = ρ(1 + ε), (59)

h = 1 + ε +
p

ρ
. (60)
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An equation of state p = p(ρ, ε) closes the system.

The relativistic Euler equations were recast as a hyperbolic system of conservation laws.

In particular, the Jacobian matrix of the system was obtained explicitly in terms of suitable

conserved variables. As a result, this formulation allows the spectral decomposition of the

system and, therefore, the application of all of those Godunov type methods involving

approximate Riemann solvers where this information is required.

Using the 3 + 1 decomposition of the metric, all measurements can be referred to an

Eulerian observer n at rest in the spacelike slice. In particular, the components of the three

velocity of the fluid measured by n are given by

vi =
P · u
−n · u

=
ui

αut
+
βi

α
, (61)

where P is the projector orthogonal to u, W ≡ −(u · n) = αut is the Lorentz factor, satis-
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fying W = (1− v2)−1/2, with v2 = γijv
ivj. We now introduce suitable “conserved” variables

allowing for a conservative formulation of the general relativistic hydrodynamic equa-

tions. These are not the ordinary fluid, or “primitive”, variables w = (ρ, vi, ε) , but rather

the quantities U(w) = (D,Sj, τ ), with

D = ρW ,

Sj = ρhW 2vj ,

τ = ρhW 2 − p−D . (62)

Here D, Sj and E are the rest mass density, the momentum in the j-direction and the

total energy density, respectively, as measured by the Eulerian observer. As a result, the

fundamental system in quasi-conservation form reads

1√
−g

(
∂
√
γU(w)

∂x0
+
∂
√
−gFi(w)

∂xi

)
= s(w), (63)
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where g ≡ det(gµν) and
√
−g = α

√
γ (γ ≡ det(γij)). The fluxes Fi(w) and the source terms

s(w) in (63) take the explicit form

Fi(w) =

(
D

(
vi − βi

α

)
, Sj

(
vi − βi

α

)
+ pδij, τ

(
vi − βi

α

)
+ pvi

)
, (64)

and

s(w) =

(
0, T µν

(
∂gνj
∂xµ
− Γδνµgδj

)
, α

(
T µ0∂lnα

∂xµ
− T µνΓ0

νµ

))
, (65)

respectively, where the Γµνβ ’s are the Christoffel symbols of the given metric. Note that

the presence of the source terms s(w) does not prevent the application of conservative

methods, since the sources do not include gradients of the conserved variables and are

jsut related to the curvature of the metric.
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7 Initial Data

Figure 4: Gravitational mass shown as a function of the central energy density for equilibrium models constructed with the polytropic equation of

state (Γ = 2, KID = 100). The solid, dashed and dotted lines correspond to the sequence of nonrotating models, the sequence of models rotating at the

mass-shedding limit and the sequence of models that are at the onset of the secular instability to axisymmetric perturbations.
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7.1 Slowly Rotating Stars

Figure 5: Collapse sequence for the slowly rotating model D1. Different panels refer to different snapshots during the collapse and show the

isocontours of the rest-mass density and velocity field in the (x, y) plane (left column) and in the (x, z) plane (right column), respectively.

Initially, no radial motion is present and the star is almost spherical.
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Figure 6: Time = 0.49 ms.

During the collapse the star increases its compactness and the matter is compressed to

larger pressures, the velocity field acquires a radial component.
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Figure 7: Time = 0.54 ms.

The collapse speeds up and relativistic radial velocities are reached rapidly.



50

Figure 8: Time = 0.57 ms: an apparent horizon has just been formed.

An apparent horizon is found and the portion of the computational domain containing the

singularity is excised.
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7.2 Rapidly Rotating Stars

Figure 9: Collapse sequence for the rapidly rotating model D4. The conventions used in these panels are the same as in Fig. 5, which can be

used for a comparison with the collapse of a slowly rotating model.

Initially, no radial motion is present and the star is considerably flattened with axis ratio

rp/re = 0.65.
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Figure 10: Time = 0.49 ms.

The parts of the star around the rotation axis that are experiencing smaller centrifugal

forces collapse more promptly and, as a result, the configuration increases its oblateness.
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Figure 11: Time = 0.67 ms: an apparent horizon has just been formed.

The star has flattened considerably, the matter near the rotation axis has fallen inside the

apparent horizon, but a disc of low-density matter has formed orbiting at ∼ 0.2c.
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Figure 12: Time = 0.79 ms: the disc is unstable and is rapidly accreted onto the black hole.

The disc outside the apparent horizon is not dynamically stable and it rapidly accretes onto

the black hole. Animations can be founds at www.sissa.it/ ∼rezzolla/WhiskyI .
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8 Non-spherical Fluid Collapse: Trapped Surfaces

As mentioned above, the dynamics of trapped surfaces in a perfect fluid collapse is similar

to the one in the OS collapse continues to hold also in the case of the collapse of a perfect

fluid. The first important difference is that the apparent horizon is produced “earlier”,

i.e. before the stellar surface reaches R = 2M but can, because of the fluid compression, be

formed also earlier. The second difference appears in multidimensional calculations and is

caused by the rotation of initial data, which gives rise to both apparent and event horizons

that are not spheres but, oblate spheroids, i.e. with a polar proper circumference which is

smaller than the corresponding equatorial one.
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Figure 13: Solid, dashed and dotted lines represent the worldlines of the circumferential radii of the event horizon, of the apparent horizon

and of the stellar surface, respectively. Note that for the horizons we plot both the equatorial and the polar circumferential radii.
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9 Some energy estimates from numerical simulations

So far, the numerical investigation of the energy loss to gravitational waves has been dis-

cussed in two different works only. The first one, by Stark and Piran (1985) was restricted

to axisymmetric configurations and computed the gravitational wave emission from the

collapse of rapidly rotating stars to black holes. While the initial data was rather unrealistic

and with a large error in the constraint equations, these calculations are probably the most

accurate to-date because of the large spatial resolution allowed by a 2D simulation.

The recent calculations by Baiotti et al. (2004) have computed the energy loss to gravita-

tional waves. Although this is the first estimate in 3D, it still has a rather large truncation

error.

The energy estimates in the two cases are:
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• Stark and Piran (1985): 2D, spherical coordinates, unrealistic initial data

∆E/M ' 1.4× 10−4 (J/M 2)4 for (J/M 2) . 0.5

• Baiotti, Rezzolla et al. (1985): 3D, Cartesian coordinates, realistic initial data

∆E/M ' 5.0× 10−3 for (J/M 2)� 1

∆E/M ' 1.0× 10−2 for (J/M 2) ∼ 0.5

where it is important to underline that the in the 3D simulations, the low resolution allows

to determine upper limits only, which are entirely due to the large truncation error. It is

likely that the estimates will converge to similar values once resolutions comparable to the

2D simulations will be reached also in 3D simulations.
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